A simulation tool to model ozone retrieval uncertainties of Brewer and Dobson instruments

Luca Egli

Julian Gröbner, Ulf Köhler, Alberto Redondas, Virgilio Carreño and Henri Diemoz
(“UVNews-Team”)

and

Mario Blumthaler, Omar El Gawhary, Petri Kärhä, Ingo Kröger and Mark Weber
(“ATMOZ Uncertainty Team”)

The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union
Project ATMOZ

Main objective:
A traceable and harmonized global total column ozone network within 1%

5 Workpackages (WP):

• **WP 1:** Radiometric characterization of Dobson, Brewer & Array spectrordiometers
• **WP 2:** Development of array-based solar UV spectroradiometers
• **WP 3:**
 - Improved and consistent *ozone absorption cross-sections*
 - Validation of high resolution *extraterrestrial solar reference spectra*
 - **Comprehensive uncertainty budget** incorporating instrumental and atmospheric uncertainties
• **WP 4:** Creating Impact /Dissemination (Publications, Workshops, Campaigns, Training Commercialization)
• **WP 5:** Management (PMOD/WRC)
Comprehensive Uncertainty Budget

Radiometry

Atmospheric Model

Measurement

Uncertainty of measurement: \pm

Total Column Retrieval Method

Uncertainty of model: \pm

O_3 Value

Uncertainty of O_3 value

Direct sun measurement:
- 4 Wavelengths: (Dobson/Brewer)
- Full spectrum: Array spectroradiometer

Beer-Lambert Law

$$I_\lambda = I_\lambda^0 e^{-\tau_\lambda m}$$
Comprehensive Uncertainty Budget

Radiometry

Measurement

Uncertainty of measurement: +

- noise of the measurement
- wavelength uncertainty
- uncertainty of calibration
- bandpass uncertainty
- temperature gradients
- dead-time effect / linearity
- ND filter

Atmospheric Model

Total Column Retrieval Method

Uncertainty of model:

- selected wavelengths (Brewer/Dobsons)
- selected cross-section
- selected atmospheric temperature
- extraterrestrial spectrum
- airmass uncertainty (atmospheric profile)
- rayleigh airmass uncertainty
- AOD / SO₂

O₃ Value

Uncertainty of O₃ value
Sensitivity on Parameters

Sensitivity Analysis:

- Investigate **single contributions to overall uncertainty** budget
- Find the **most important parameter affecting** the overall budget
- Potential for **improvement** of measurement and/or retrieval.
- Calculate the **overall uncertainty budget**.

A software tool is needed for simulation the effect on different parameters

<table>
<thead>
<tr>
<th>Uncertainty of measurement:</th>
<th>Uncertainty of model:</th>
</tr>
</thead>
<tbody>
<tr>
<td>noise of the measurement</td>
<td>selected wavelengths (Brewer/Dobsons)</td>
</tr>
<tr>
<td>wavelength uncertainty</td>
<td>selected cross-section</td>
</tr>
<tr>
<td>uncertainty of calibration</td>
<td>selected atmospheric temperature</td>
</tr>
<tr>
<td>Bandpass uncertainty</td>
<td>extraterrestrial spectrum</td>
</tr>
<tr>
<td>temperature gradients</td>
<td>airmass uncertainty (atmospheric profile)</td>
</tr>
<tr>
<td>dead-time effect /linearity</td>
<td>rayleigh airmass uncertainty</td>
</tr>
<tr>
<td>ND filter</td>
<td>AOD /SO₂</td>
</tr>
</tbody>
</table>

Dependencies between measurement uncertainties and model uncertainties
Procedure of Simulation

1. Generating spectrum (PMOD-model) between 300 – 360 nm with known parameters and 49 atmospheric conditions 7 ozone x 7 airmass

\[I_\lambda = I_\lambda^0 e^{-\tau_\lambda m} \]

FWHM as small as possible (=0.01 nm, ET)!
Procedure of Simulation

1. Generating spectrum (PMOD-model) between 300 – 360 nm with known parameters and 49 atmospheric conditions 7 ozone x 7 airmass

\[I_\lambda = I_\lambda^0 e^{-\tau_\lambda m} \]

FWHM as small as possible (=0.01 nm, ET)!
2. Define retrieval method: **Double ratio technique** (Dobsons and Brewers)

\[I_\lambda = I_\lambda^0 e^{-\tau_\lambda m} \]

Beer-Lambert Law

\[\log I_i = \log I_i^0 - \tau_i^R m_R - \alpha_{i, O_3}^0 X m_{O_3} - \tau_i^{aod} m_{aod} \]

\(m_R, m_{O_3}, \) and \(m_{aod} \) are different airmasses due to different respective heights of the ozone, air and particle molecules within the different atmospheric profiles.

\(I_i^0 = \) Extraterrestrial Spectrum, \(i = \) wavelength-index

<table>
<thead>
<tr>
<th>(i) (slit)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda)-Brewer (nm)</td>
<td>310.1</td>
<td>313.5</td>
<td>316.8</td>
<td>320</td>
</tr>
<tr>
<td>(\lambda)-Dobson (nm)</td>
<td>305.51</td>
<td>317.62</td>
<td>325.08</td>
<td>339.97</td>
</tr>
</tbody>
</table>
Dobson Slits - D064

Dobsons D064 (DWD) and D083 (NOAA) characterized for wavelength and bandpass at PTB Braunschweig with tuneable laser facilities (Saulius Nevas)

- Dobson: Peak 325 nm
- D064 A-S3: Peak 325.08 nm
- D083 A-S3: Peak 325.1 nm
- D083 A-S3 (1993): Peak 325.12 nm
Dobson Slits - D064

Dobsons D064 (DWD) and D083 (NOAA) characterized for wavelength and bandpass at PTB Braunschweig with tuneable laser facilities (Saulius Nevas)

<table>
<thead>
<tr>
<th>Slit</th>
<th>Peak (nm)</th>
<th>FWHM (nm)</th>
<th>Peak (nm)</th>
<th>FWHM (nm)</th>
<th>Peak (nm)</th>
<th>FWHM (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-S2</td>
<td>305.51</td>
<td>1.03</td>
<td>305.46</td>
<td>1.05</td>
<td>305.52</td>
<td>0.99</td>
</tr>
<tr>
<td>C-S2</td>
<td>311.50</td>
<td>1.08</td>
<td>311.47</td>
<td>1.09</td>
<td>311.46</td>
<td>1.04</td>
</tr>
<tr>
<td>D-S2</td>
<td>317.62</td>
<td>1.27</td>
<td>317.58</td>
<td>1.24</td>
<td>317.51</td>
<td>1.17</td>
</tr>
<tr>
<td>A-S3</td>
<td>325.08</td>
<td>3.56</td>
<td>325.10</td>
<td>3.56</td>
<td>325.02</td>
<td>3.46</td>
</tr>
<tr>
<td>C-S3</td>
<td>332.44</td>
<td>3.81</td>
<td>332.47</td>
<td>3.81</td>
<td>332.40</td>
<td>3.73</td>
</tr>
<tr>
<td>D-S3</td>
<td>339.97</td>
<td>4.06</td>
<td>334.00</td>
<td>4.12</td>
<td>339.90</td>
<td>4.01</td>
</tr>
</tbody>
</table>
Procedure of Simulation

«Double ratio» / «weighted ratio» technique (Dobsons and Brewers): combining all four wavelengths

\[F = F_0 - \Delta \tau^R m_R - \Delta \alpha^{O3} X m_{O_3} - \Delta \tau^{aod} m_{aod} \]

where

\[\Delta \tau^R = \sum_i W_i \tau_i^R ; \quad \Delta \alpha^{O3} = \sum_i W_i \alpha_i^{O3} \]

\(W_i(Dobsons) = (+1, -1, +1, -1) \) and \(W_i(Brewers) = (+1, -0.5, -2.2, +1.7) \), with \(\sum_i W_i = 0 \).

\[\Delta \tau^{aod} = \sum_i W_i \tau_i^{aod} \approx 0 \]

\[F = F_0 - \Delta \tau^R m_R - \Delta \alpha^{O3} X m_{O_3} \]

\[TOC = X = \frac{F_0 - F - \Delta \tau^R m_R}{\Delta \alpha^{O3} m_{O_3}} \]
Procedure of Simulation

«Double ratio» / «weighted ratio» technique (Dobsons and Brewers):
combining all four wavelengths

\[F = F_0 - \Delta\tau^R m_R - \Delta\alpha^O_3 X m_{O_3} - \Delta\tau^{aod} m_{aod} \]

where

\[\Delta\tau^R = \sum_i W_i \tau_i^R ; \quad \Delta\alpha^O_3 = \sum_i W_i \alpha_i^O \]

\[W_i(Dobsons) = (+1, -1, +1, -1) \quad \text{and} \quad W_i(Brewers) = (+1, -0.5, -2.2, +1.7), \quad \text{with} \quad \sum_i W_i = 0. \]

\[\Delta\tau^{aod} = \sum_i W_i \tau_i^{aod} \approx 0 \]

\[F = F_0 - \Delta\tau^R m_R - \Delta\alpha^O_3 X m_{O_3} \]

\[TOC = X = \frac{F_0 - F - \Delta\tau^R m_R}{\Delta\alpha^O_3 m_{O_3}} \]

calculating integral over the slits
Procedure of Simulation

3. Random variation of uncertain parameters

\[TOC = X = \frac{F_0 - F - \Delta \tau^R m_R}{\Delta \alpha^O_3 m_{O_3}} \]

Uncertainty of measurement:
- noise of the measurement
- wavelength uncertainty
- uncertainty of calibration
- bandpass uncertainty
- temperature gradients
- dead-time effect / linearity
- ND filter

Uncertainty of model:
- selected wavelengths (Brewer/Dobson)
- selected cross-section
- selected atmospheric temperature
- extraterrestrial spectrum
- airmass uncertainty (atmospheric profile)
- rayleigh airmass uncertainty
- AOD / SO₂
Procedure of Simulation

3. Random variation of uncertain parameters

\[TOC = X = \frac{F_0 - F - \Delta \tau R m_R}{\Delta \alpha O_3 m_{O_3}} \]

\[\equiv \text{Uncertainty of } O_3 \text{ value} \]

4. Making 100 runs with random variation, for all 49 atmospheric conditions

5. Comparison (ratio) between input ozone (no variation) and retrieved ozone

Uncertainty = standard deviation of all ratios
First Result: No Variation

Dobson: 0.14% - 0.3 % (systematic)
Brewer: 0.02% - 0.1% (systematic)

Simulation works.
First Result: Array SRM

FWHM of generated spectrum: 0.5 nm (not 0.01nm), sampling resolution: 0.2 nm

Dobson: 0.5% - 0.7 % (systematic)

Brewer: -6.4% - 5.6% (systematic)

Retrieval does not work for spectra of array spectroradiometer. Systematic bias can be eliminated by Langley calibration.
Variation of wavelength shift

Variation of wavelength-shift of input spectrum: ±0.025 / (±0.0035) nm

Dobson: 0.05% - 0.35%

Brewer: 0.05% - 0.5%
Variation of wavelength shift

Variation of wavelength-shift of input spectrum: ±0.025 / (±0.0035) nm

Dobson: 0.05% - 0.35%

Brewer: 0.5% - 3.5%
Result: Stratospheric Temperature

Dobson: 1.2% - 1.4%
Brewer: 0.7% - 0.9%
Result: Stratospheric Temperature

Variation of stratospheric temperature (retrieval): 213K – 243K: «Bremen»

Dobson: 0.6% - 0.7%

Brewer: 0.27% - 0.32%
Summary Sensitivity

Averaged uncertainty of **Ozone** over all atmospheric conditions:

<table>
<thead>
<tr>
<th></th>
<th>Dobsons</th>
<th>Brewer</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength ±0.025 nm</td>
<td>0.1%</td>
<td>0.9%</td>
<td></td>
</tr>
<tr>
<td>Noise of detector /Calibration /ND filter Deadtime /linearity/ Instr. Temperature ±0.1%</td>
<td>0.06%</td>
<td>0.4%</td>
<td>linear</td>
</tr>
<tr>
<td>Strat. Temp Bass-Paur: 213K-243 K</td>
<td>1.2%</td>
<td>0.8%</td>
<td></td>
</tr>
<tr>
<td>Strat. Temp Bremen: 213K-243 K</td>
<td>0.6%</td>
<td>0.3%</td>
<td></td>
</tr>
<tr>
<td>Cross-Section Bass-Paur: ±5%</td>
<td>1.2%</td>
<td>2.4%</td>
<td></td>
</tr>
<tr>
<td>Extraterrestrial : ±5%</td>
<td>0%</td>
<td>0%</td>
<td>Uncertainty from Langley?</td>
</tr>
<tr>
<td>Ozone Air Mass Variation</td>
<td>linear</td>
<td>linear</td>
<td>Uncertainty of air mass need to be investigated</td>
</tr>
<tr>
<td>AOD / SO2</td>
<td>?</td>
<td>?</td>
<td>Need to be investigated</td>
</tr>
</tbody>
</table>
Variation of all Parameters

Variation of **uncertain input** and **model parameters**:
Wavelength ±0.025 nm; Calib: ±0.1%; Bass-Paur, Temp. 213-243K, Variation of cross section ±5%

Dobson: 1.5% - 1.9% = 1.7%

Brewer: 4.4% - 5.8% = 4.6%
Summary Sensitivity

«Uncertainty reduction» by convention (identical cross-sections, ET etc.)

<table>
<thead>
<tr>
<th></th>
<th>Dobsons</th>
<th>Brewer</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength</td>
<td>±0.025 nm</td>
<td>0.1%</td>
<td>0.9%</td>
</tr>
<tr>
<td>Noise of detector /Calibration /ND filter Deadtime /linearity/ Instr. Temperature ±0.1%</td>
<td>0.06%</td>
<td>0.4%</td>
<td>linear</td>
</tr>
<tr>
<td>Strat. Temp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bass-Paur: 213K-243 K</td>
<td>1.2%</td>
<td>0.8%</td>
<td></td>
</tr>
<tr>
<td>Strat. Temp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bremen: 213K-243 K</td>
<td>0.6%</td>
<td>0.3%</td>
<td></td>
</tr>
<tr>
<td>Cross-Section</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bass-Paur: ±5%</td>
<td>1.2%</td>
<td>2.4%</td>
<td></td>
</tr>
<tr>
<td>Extraterrestrial : ±5%</td>
<td>0%</td>
<td>0%</td>
<td>Uncertainty from Langley?</td>
</tr>
<tr>
<td>Ozone Air Mass Variation</td>
<td></td>
<td></td>
<td>Uncertainty of air mass need to be investigated</td>
</tr>
<tr>
<td>AOD / SO2</td>
<td>?</td>
<td>?</td>
<td>Need to be investigated</td>
</tr>
</tbody>
</table>

«Harmonized instrument network»
Summary Sensitivity

«Uncertainty reduction» by convention (identical cross-sections, ET etc.)

Discussion / Decision

SAG Ozone

Scientific Steering Committee ATMOZ

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1.2%</td>
<td>0%</td>
<td>linear</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>linear</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Need to be investigated</td>
</tr>
</tbody>
</table>

Uncertainty of air mass need to be investigated

Uncertainty from Langley?

«Harmonized instrument network»
Variation of all Parameters

Variation of **parameters**, which cannot be determined by convention
Wavelength ±0.025 nm; Calib: ±0.1%; Bremen, Temp. 213-243K

Dobson: 0.6% - 0.75% = 0.7%

Brewer: 0.5% - 3.5% = 1.1%
Conclusions

- **Dobson** show generally a lower uncertainty budget than **Brewers**
- Reducing **wavelength and calibration uncertainty** is crucial for Brewers
- **Brewers** show a less sensitivity to stratospheric temperature variation than Dobsons
- “**Bremen**” cross section is less sensitive to stratospheric temperature variations
Conclusions

• Uncertainties of signal at each individual slit is essential and may be composed of:
 – Calibration
 – Intensity of sun (airmass)
 – ND filters
 – Dead time / linearity
 – Temperature gradients of instruments

The impact of these effects on the uncertainty of the signal should be investigated individually to obtain one general uncertainty of signal.
Outlook

- Uncertainty of **Langley plot calibration** need to be quantified
- Stratospheric **temperature should be known** to reduce uncertainty
- Working on **method to retrieve stratospheric temperature** from direct sun measurements
- The software will be used to **determine the overall uncertainty** from Dobson / Brewer and array spectroradiometer measurements

<table>
<thead>
<tr>
<th>Array SRM</th>
<th>NEI=0.1mW</th>
<th>NEI=0.01mW</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength ±0.05 nm</td>
<td>1% (Full Spec.)</td>
<td>0.6% (Full Spec.)</td>
<td>Depending on FWHM</td>
</tr>
<tr>
<td></td>
<td>1.5% (Multi Double Ratio)</td>
<td>1.1% (Multi Double Ratio)</td>
<td></td>
</tr>
<tr>
<td>Calibration ±5%</td>
<td>1.1%</td>
<td>0.7%</td>
<td>Constant factor: No effect</td>
</tr>
<tr>
<td></td>
<td>2%</td>
<td>1.4%</td>
<td></td>
</tr>
<tr>
<td>Extraterrestrial ±2%</td>
<td>0.6%</td>
<td>0.2%</td>
<td>Constant factor: No effect</td>
</tr>
<tr>
<td></td>
<td>0.7%</td>
<td>0.3%</td>
<td></td>
</tr>
<tr>
<td>Strat. Temp Bremen: 213K-243 K</td>
<td>0.9%</td>
<td>0.7%</td>
<td>Bremen Recommended</td>
</tr>
<tr>
<td></td>
<td>1.1%</td>
<td>0.8%</td>
<td></td>
</tr>
<tr>
<td>Cross-Section Var. Bremen: ±5%</td>
<td>0.8%</td>
<td>0.4%</td>
<td>Depending on FWHM</td>
</tr>
<tr>
<td></td>
<td>0.6%</td>
<td>0.1%</td>
<td></td>
</tr>
</tbody>
</table>

Remark: ±0.05 nm = 1% (Full Spec.) 1.5% (Multi Double Ratio)
1.5% (Multi Double Ratio)
Outlook

- Uncertainty of **Langley plot calibration** need to be quantified
- Stratospheric **temperature should be known** to reduce uncertainty
- Working on **method to retrieve stratospheric temperature** from direct sun measurements
- The software will be used to **determine the overall uncertainty** from Dobson / Brewer and array spectroradiometer measurements, in combination with other approaches.

<table>
<thead>
<tr>
<th>Array SRM</th>
<th>NEI=0.1mW</th>
<th>NEI=0.01mW</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength ±0.05 nm</td>
<td>1%</td>
<td>0.6%</td>
<td>Constant factor: No effect</td>
</tr>
<tr>
<td>Calibration ±5%</td>
<td>1.1%</td>
<td>0.7%</td>
<td>Constant factor: No effect</td>
</tr>
<tr>
<td>Extraterrestrial ±2%</td>
<td>0.6%</td>
<td>0.2%</td>
<td>Bremen Recommended</td>
</tr>
<tr>
<td>Strat. Temp Bremen: 213K-243 K</td>
<td>0.9%</td>
<td>0.7%</td>
<td>Depending on FWHM</td>
</tr>
<tr>
<td>Cross-Section Var. Bremen: ±5%</td>
<td>0.8%</td>
<td>0.4%</td>
<td></td>
</tr>
</tbody>
</table>

Next Talk: Petri Kärhä
Array Spectroradiometer (full spectrum)

Automatic detection of cut-on wavelength

[Diagram showing generated UV spectra with 350 DU ozone, with different lines and markers indicating modelled and modified spectra, as well as cut-on wavelengths for different air masses.]
Cut-On Wavelength

Variation: ALL, NEI=1mW

Variation: ALL, NEI=0.1mW

Variation: ALL, NEI=0.01mW

Variation: ALL, NEI=0.001mW

Ozone (DU)

Air Mass
Variation of all Parameters

Variation of **all uncertain input** and **model parameters** (500 runs):
Bass-Paur crosssection / consistent networks

NEI=0.1mW: **1.5% - 2.5% / 0.8%-2.2%**
NEI=0.01mW: **1.8% - 3.8% (Double ratio)**

NEI=0.01mW: **1.3% - 1.9% / 0.7%-1.3%**
NEI=0.01mW: **1.6% - 3% (Double ratio)**
Conclusions

Overall uncertainty of ozone retrieval by multispectral measurements depends mainly on:

- **NEI = Noise equivalent Irradiance** => impact on selection of usable wavelength range
- Wavelength uncertainty
- Atmospheric conditions (mainly air-mass)
- Air-mass determination

Less contributions for the overall uncertainty are from:

- Selected X-sections; Variations of X-section => **convention to select one specific X-section** (recommendation: “Bremen X-section => new generation in ATMOZ)
- Variation of extraterrestrial spectrum => **convention to select one specific ET** (new measurements and validation in ATMOZ)
- Random Variation of input spectrum
- Stratospheric Temperature => **retrieving stratospheric temperature** (on-going research)
- Bandpass (except in combination with wavelength shift)
- Resolution (small impact on random variation)
Conclusions

Overall uncertainty of ozone retrieval by multispectral measurements depends on:

- **NEI = Noise equivalent Irradiance** => impact on selection of usable wavelength range
- Wavelength uncertainties
- Atmospheric conditions (mainly air-mass)
- Air-mass determination

Less contributions for the overall uncertainty are from:

- Selected X-sections; Variations of X-section -> **convention to select one specific X-section** (recommendation: “Bremen X-section -> new generation in ATMOZ)
- Variation of extraterrestrial spectrum -> **convention to select one specific ET** (new measurements and validation in ATMOZ)
- Random Variation of input spectrum
- Stratospheric Temperature -> **retrieving stratospheric temperature** (on-going research)
- Bandpass (except in combination with wavelength shift)
- Resolution (small impact on random variation)