Simulating effects of unknown correlations in spectral data on uncertainties of TOC derived from multispectral measurements

Petri Kärhä
Aalto University School of Electrical Engineering

The European Metrology Research Programme (EMRP) is jointly funded by the EMRP participating countries within EURAMET and the European Union.
Uncertainty of spectrally derived quantities

- Quantities such as Color Coordinates x and y, color temperature CCT, and amount of ozone TOC are calculated using measured spectra.
- Uncertainties of spectral irradiance values at different wavelengths are correlated, but mostly we do not know how.
- New approach: form spectral functions that simulate different scenarios that the correlations may have.
- Monte Carlo analysis with the functions gives uncertainty values.
- Two steps:
 - First develop methods for x, y and CCT (more familiar, possibility to compare).
 - Extend to TOC.
- Progress with colorimetry.
Preliminary work with FEL lamps

- Analyse uncertainties of color coordinates of Aalto spectral irradiance lamps
- x, y derived from spectrum as integrals

- Form a distorted spectrum
 \[E_e(\lambda) = (1 + \epsilon \delta(\lambda) u_E(\lambda)) E(\lambda) \]
 - $u_E(\lambda)$ is the relative uncertainty of $E(\lambda)$
 - $\delta(\lambda)$ is an error function with $\sigma = 1$.
 - $\epsilon \sim N(0,1)$ is a Monte Carlo variable
- The error function is formed as sum of cosines

\[
X = \int_{\lambda_1}^{\lambda_2} E(\lambda) \tilde{x} d\lambda, \\
Y = \int_{\lambda_1}^{\lambda_2} E(\lambda) \tilde{y} d\lambda, \\
Z = \int_{\lambda_1}^{\lambda_2} E(\lambda) \tilde{z} d\lambda, \\
x = X/(X + Y + Z), \text{ and} \\
y = X/(X + Y + Z),
\]
Error function from orthogonal base-functions in $[\lambda_1, \lambda_2]$

- The error function is formed as
 \[\delta(\lambda) = \gamma_1 f_1(\lambda) + \gamma_2 f_2(\lambda) + \gamma_3 f_3(\lambda) + \gamma_4 f_4(\lambda) \]
- $\gamma_1 - \gamma_N$ are Monte Carlo variables.
- To get standard uncertainties, it must be that $\gamma_1^2 + \gamma_2^2 + \gamma_3^2 + \gamma_4^2 = 1$
- This can be accomplished by taking a random point in N-dimensional spherical coordinate system, and using its x, y, z, \ldots coordinates as the weights
- The base functions have been chosen so that their RMS-value is 1 in $[\lambda_1, \lambda_2]$
- \[E_e(\lambda) = (1 + \varepsilon \delta(\lambda) u_E(\lambda)) E(\lambda) \]

\[
\begin{align*}
 f_1(\lambda) &= \frac{2}{\sqrt{\pi}} \sin \left(1 \left(2\pi \frac{\lambda - \lambda_1}{\lambda_2 - \lambda_1} + \phi \right) \right) \\
 f_2(\lambda) &= \frac{2}{\sqrt{\pi}} \sin \left(2 \left(2\pi \frac{\lambda - \lambda_1}{\lambda_2 - \lambda_1} + \phi \right) \right) \\
 f_3(\lambda) &= \frac{2}{\sqrt{\pi}} \sin \left(4 \left(2\pi \frac{\lambda - \lambda_1}{\lambda_2 - \lambda_1} + \phi \right) \right) \\
 f_4(\lambda) &= \frac{2}{\sqrt{\pi}} \sin \left(8 \left(2\pi \frac{\lambda - \lambda_1}{\lambda_2 - \lambda_1} + \phi \right) \right)
\end{align*}
\]
Preliminary results

- Simulation of uncertainties of colorimetric properties of Aalto lamps
- With 10 000 runs
- Individual base functions give maxima at f_1 – f_2 and reduce to negligible at $\sim f_5$
- Cumulative uncertainties sound reasonable

<table>
<thead>
<tr>
<th>Value</th>
<th>f1</th>
<th>f2</th>
<th>f3</th>
<th>f4</th>
<th>f5</th>
<th>f6</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0.43060</td>
<td>0.00058</td>
<td>0.00055</td>
<td>0.00025</td>
<td>0.00002</td>
<td>0.00000</td>
</tr>
<tr>
<td>y</td>
<td>0.40231</td>
<td>0.00027</td>
<td>0.00056</td>
<td>0.00019</td>
<td>0.00002</td>
<td>0.00000</td>
</tr>
<tr>
<td>CCT / K</td>
<td>3101.7 K</td>
<td>9,56</td>
<td>11,47</td>
<td>5,49</td>
<td>0,41</td>
<td>0,05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Value</th>
<th>f1</th>
<th>f1 + f2</th>
<th>f1 + f2 + f3</th>
<th>f1 + f2 + f3 + f4</th>
<th>f1 + f2 + f3 + f4 + f5</th>
<th>f1 + f2 + f3 + f4 + f5 + f6</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0.43060</td>
<td>0.00058</td>
<td>0.00056</td>
<td>0.00048</td>
<td>0.00042</td>
<td>0.00037</td>
</tr>
<tr>
<td>y</td>
<td>0.40231</td>
<td>0.00027</td>
<td>0.00045</td>
<td>0.00038</td>
<td>0.00033</td>
<td>0.00030</td>
</tr>
<tr>
<td>CCT / K</td>
<td>3101.7 K</td>
<td>9,56</td>
<td>10,56</td>
<td>9,30</td>
<td>8,07</td>
<td>7,08</td>
</tr>
</tbody>
</table>
Plan for further work

• Half wave, quarter wave, and full correlation should be considered as well and added to the model
• Simulations give maksimum uncertainties and conditions leading to them
 – How will the maxima convert to standard uncertainties?
 – How should the components to include be selected?
 • Go through all scenarios?
 • Select the most likely base functions?
• Compare with earlier work of Jim Gardner of CSIRO
• After knowing that the model works, apply to Ozone measurements
 – How should the base functions then be selected? The wavelength range 290 – 320 is significantly narrow, there can not be many sign changes.