Alberto Redondas, Daniel Santana
Alexander Cede, Martin Tiefengraber

Regional Brewer Calibration Center - Europe RBCC-E Izaña Atmospheric Research Centre, State Meteorological Agency of Spain.
Luzblick
OUTLINE

* Absolute Calibration during ATMOZ-
 introduced in Pandora calibration
* Effect of the Absolute calibration
* Effect of the absorbing gases.
1) Absolute calibration during atmoz
2) Results using the absolute calibration (CF_ABS)
3) Results removing absorbing gases
 a) CF_SO2
 b) CF_SO2_HCHO
4) Results removing absorbing gases and absolute calibration
 a) CF_ABS
 b) CF_ABS_SO2
 c) CF_ABS_SO2_HCLO
Prototype v2: Simple Fiber Optic Guide

FO guide Installed
Pandonia

- Ground-based remote sensing network for air pollution monitoring and satellite validation
- Uses Pandora-2S and Pandora as core instruments

MOTIVATION:
Long, uninterrupted, well-maintained, homogeneously calibrated time-series of ground-based remote sensing atmospheric ozone measurements have been and still are the backbone for the validation of ozone columns.
From Pandora to Pandora-2S: head sensor
There is an extensive network calibration plan, which is not fully implemented yet. The key points are:

- Instruments undergo a detailed initial lab-calibration
- Location instruments are visited by mobile reference unit and FCT (Field Calibration Tool) to minimize data interruptions.
ABSOLUTE CALIBRATION:

- PTB Lamp Measurements.
- Determination of the reference plane (-27.3cm).
- Added the Absolute calibration into the P121 CF (FW5).
- Not added yet the absolute calibration for FW6.
PANDORA -ATMOZ-

- Absolute Calibration
- Stray Light matrix
- New ozone cross section
 (Bremen)

<table>
<thead>
<tr>
<th>Offset for Dist >= [cm]</th>
<th>Mean</th>
<th>Std Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>85.1</td>
<td>-22.749</td>
<td>1.854</td>
</tr>
<tr>
<td>75.1</td>
<td>-27.768</td>
<td>1.042</td>
</tr>
<tr>
<td>65.1</td>
<td>-28.617</td>
<td>0.870</td>
</tr>
<tr>
<td>55.1</td>
<td>-28.108</td>
<td>0.784</td>
</tr>
<tr>
<td>45.1</td>
<td>-27.369</td>
<td>0.583</td>
</tr>
<tr>
<td>35.1</td>
<td>-26.741</td>
<td>0.473</td>
</tr>
<tr>
<td>25.1</td>
<td>-25.485</td>
<td>0.369</td>
</tr>
</tbody>
</table>
Langley Absolute Calibration (no filter)

Example of Langley (up) and R^2 of the fit

The UV range 290-325 nm shows more error on the Langley fit a bigger variability.

Ratio to mean langley extrapolation -ATMOZ- campaign
Langey ratio, filter U340 included
Other Improvements at IZO

CF original - FW5 O3vc data respect Brewer Median:

20160901-20160930, Fig16, ((P121 O3 filtered ftws [5, 6] - Brewers Median) % Brewers Median [157, 185, 183]), VS SZA, [O3 Diff %]

Rel Diff ((Pandora121_IZO_O3_FW5.txt_gas_filt - All Brewers median) / All Brewers median [157, 185, 183]), Mean = -5.616

O3 Relative Difference [%]

SZA
CF abs - FW5 O3vc data respect Brewer Median:

20160901-20160930, Fig16, ((P121 O3 filtered ftws [5, 6] - Brewers Median) % Brewers Median [157, 185, 183]), VS SZA, [O3 Diff %]

Rel Diff ((Pandora121_IZO_O3_FW5.txt_gas_filt - All Brewers median) / All Brewers median [157, 185, 183]), Mean = -6.315
Results using the absolute calibration (CF_ABS)

- The addition of the absolute calibration does not reduce the offset respect the brewers.

- The SZA dependence is worse in the ABS calibrated data. -> Wrong ABS calibration?
Effects of the Gasses in the original CF:
The standard gas retrieval method in the pandora processing software have into account 4 gasses.

- O3
- NO2
- SO2
- HCHO

Some tests were done excluding some of them in the retrieval process.
Filters used in the comparison plots:

- **DQP1**: wavelength shift: O3 < 0.2 nm
- **DQP2**: Stray Light: solar zenith angle < 79
- **DQP2**: Stray Light: Air mass < 5
- **DQP4**: Clouds: Error on the retrieval Noise: < 5 DU(O3)
- **DQP5**: Fitting result index: 1, 2 = no error, >2 = error
CF Original - FW5 comparison

20160901-20160930, Fig06, P121 O3 filtered ftws [5], and Brewers Median [157, 185, 183], O3 Vertical Columns VS Time, [DU]
CF Original - FW5 and FW6 comparison

20160919-20160919, Fig06, P121 O3 filtered ftws [5, 6], and Brewers Median [157, 185, 183], O3 Vertical Columns VS Time, [DU]
CF Original - FW5 comparison

20160901-20160930, Fig16, ((P121 O3 filtered ftws [5] - Brewers Median) % Brewers Median [157, 185, 183]), VS SZA, [O3 Diff %]

- (P121_CF121_v1d20160415_Daumont4TGOME_225K_FW5_gas_vc - Brewers median) % Brewers median, Mean = -5.608
- (P121_CF121_v1d20160415_Daumont4TGOME_225K_withoutHCHO_FW5_gas_vc - Brewers median) % Brewers median, Mean = 0.014
- (P121_CF121_v1d20160415_Daumont4TGOME_225K_withoutSO2HCHO_FW5_gas_vc - Brewers median) % Brewers median, Mean = -0.095
CF Original - FW6 comparison

20160901-20160930, Fig16, ((P121 O3 filtered ftws [6] - Brewers Median) % Brewers Median [157, 185, 183]), VS SZA, [O3 ReDiff %]

- (P121_CF121_v1d20160415_Daumont4TCOME_225K_FW6_gas_vc - Brewers median) % Brewers median, Mean = -4.630
- (P121_CF121_v1d20160415_Daumont4TCOME_225K_withoutHCHO_FW6_gas_vc - Brewers median) % Brewers median, Mean = -4.652
- (P121_CF121_v1d20160415_Daumont4TCOME_225K_withoutSO2HCHO_FW6_gas_vc - Brewers median) % Brewers median, Mean = -4.685
CF Original - FW5 and FW6

20160901-20160930, Fig16, ((P121 O3 filtered ftws [5, 6] - Brewers Median) % Brewers Median [157, 185, 183]), VS SZA, [O3 Diff %]

- Rel Diff ((Pandora121 IZO O3 FW5.txt_gas_filt - All Brewers median) / All Brewers median [157, 185, 183]), Mean = -5.616
- Rel Diff ((Pandora121 IZO O3 FW6.txt_gas_filt - All Brewers median) / All Brewers median [157, 185, 183]), Mean = -4.642
CF Original - FW5 and FW6 Without HCHO

20160901-20160930, Fig16, ((P121 O3 filtered ftws [5, 6] - Brewers Median) % Brewers Median [157, 185, 183]), VS SZA, [O3 Diff %]

Rel Diff ((Pandora121_lZO_O3_FW5.txt_gas_filt - All Brewers median) / All Brewers median [157, 185, 183]), Mean = -0.011
Rel Diff ((Pandora121_lZO_O3_FW6.txt_gas_filt - All Brewers median) / All Brewers median [157, 185, 183]), Mean = -4.666
CF Original - FW5 and FW6 Without SO2, HCHO

20160901-20160930, Fig16, ((P121 O3 filtered ftws [5, 6] - Brewers Median) % Brewers Median [157, 185, 183]), VS SZA, [O3 Diff %]
Results removing absorbing gasses in CF original:

- Removing the HCHO is enough to reduce the [mean] offset until 0.01% in the FW5
- Removing SO2+HCHO is not better than only HCHO.
- In both cases, a SZA dependence appears.
- None of the cases affects to the FW6
Effects of the Gasses with ABS calibration
CF abs - FW5 comparison

20160901-20160930, Fig05, P121 O3 original ftws [5], and Brewers Median [157, 185, 183], O3 Vertical Columns VS Time, [DU]

- P121_CF121_v1d20160415_Daumont4TGOME_225K_abs_FW5_gas_vc, Mean = 260.972[DU]
- P121_CF121_v1d20160415_Daumont4TGOME_225K_abs_withoutHCHO_FW5_gas_vc, Mean = 277.108[DU]
- P121_CF121_v1d20160415_Daumont4TGOME_225K_abs_withoutSO2HCHO_FW5_gas_vc, Mean = 276.405[DU]
- Median O3 of Brewers [157, 185, 183], Mean = 281.825[DU]
CF abs - FW5 comparison

20160919-20160919, Fig06, P121 O3 filtered ftws [5], and Brewers Median [157, 185, 183], O3 Vertical Columns VS Time, [DU]
CF abs - FW5 comparison

20160901-20160930, Fig16, ((P121 O3 filtered ftws [5] - Brewers Median) % Brewers Median [157, 185, 183]), VS SZA, [O3 Diff %]

- (P121_CF121_v1d20160415_Daumont4TGOME_225K_abs_FW5_gas_vc - Brewers median) % Brewers median, Mean = -6.322
- (P121_CF121_v1d20160415_Daumont4TGOME_225K_abs_withoutHCHO_FW5_gas_vc - Brewers median) % Brewers median, Mean = -0.126
- (P121_CF121_v1d20160415_Daumont4TGOME_225K_abs_withoutSO2HCHO_FW5_gas_vc - Brewers median) % Brewers median, Mean = -0.420
Results removing absorbing gasses in CF abs:

- The conclusions are the same as in the CF orig.
- Removing the HCHO is enough to reduce the [mean] offset until -0.15% in the FW5
- Removing SO2+HCHO is not better than only HCHO.
- In both cases, a SZA dependence appears.
CF Original + CF abs with and without different Gasses

20160901-20160930, Fig18, ((P121 O3 filtered ftws [5] - Brewer 183) % Brewer 183), VS SZA, [O3 Diff %]

- (P121_CF121_v1d20160415_Daumont4TGOME_225K_FW5_gas_vc-Brw183_gas_vc) % Brw183_gas_vc, Mean = -5.734
- (P121_CF121_v1d20160415_Daumont4TGOME_225K_withoutHCHO_FW5_gas_vc-Brw183_gas_vc) % Brw183_gas_vc, Mean = -0.306
- (P121_CF121_v1d20160415_Daumont4TGOME_225K_withoutSO2HCHO_FW5_gas_vc-Brw183_gas_vc) % Brw183_gas_vc, Mean = -0.421
- (P121_CF121_v1d20160415_Daumont4TGOME_225K_abs_FW5_gas_vc-Brw183_gas_vc) % Brw183_gas_vc, Mean = -6.415
- (P121_CF121_v1d20160415_Daumont4TGOME_225K_abs_withoutHCHO_FW5_gas_vc-Brw183_gas_vc) % Brw183_gas_vc, Mean = -0.443
- (P121_CF121_v1d20160415_Daumont4TGOME_225K_abs_withoutSO2HCHO_FW5_gas_vc-Brw183_gas_vc) % Brw183_gas_vc, Mean = -0.724
- (P121_CF121_v1d20160415_Daumont4TGOME_225K_abs_310_370nm_FW5_gas_vc-Brw183_gas_vc) % Brw183_gas_vc, Mean = -7.454
Brewer - Pandora during ATMOZ

Pandora 121 Total Ozone (Daumont) - Brewer vs SZA

Pandora 121 Total Ozone (Bremen) - Brewer vs SZA

Pandora 121 Total Ozone (Daumont) - Brewer

Pandora 121 Total Ozone (Bremen) - Brewer
The RBCC-E Team

Alberto Redondas (AEMET)
Alberto Berjon (ULL, ATMOZ)
Javier López Solano (ULL, IDEAS)
Bentorey Hernandez (ULL, PANDONIA)
Virgilio Carreño (AEMET)
Manuel Rodríguez Valido (ULL)
Daniel Santana (ULL, PANDONIA)
Sergio Fabián León Luis (AEMET)
Filiación Completa

Alberto Redondas Marrero, RBCC-E site manager Izaña Atmospheric Research Centre, State Meteorological Agency of Spain.

Virgilio Carreño Corbella , RBCC-E researcher, Izaña Atmospheric Research Centre, State Meteorological Agency of Spain.

Alberto Berjón Arroyo, RBCC-E researcher, University of La Laguna, Spain.
ATMOZ
This work has been supported by the European Metrology Research Programme (EMRP) within the joint research project ENV59 “Traceability for atmospheric total column ozone” (ATMOZ). The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.

TESTBED
These activities have been partially developed in the WMO-CIMO Testbed for Aerosols and Water Vapor Remote Sensing Instruments (Izaña, Spain).

The AERONET sun photometers at the Izaña station have been calibrated within the AERONET Europe TNA, supported by the European Community-Research Infrastructure Action under the FP7 ACTRIS grant agreement no. 262254.