# Angular Response Characterisation of Broadband UVB Sensors with Artificial Sources

#### N. S. Swift<sup>1</sup>, K. M. Nield<sup>1</sup>, J. D. Hamlin<sup>1</sup>, R. McKenzie<sup>2</sup>

1. Measurement Standards Laboratory, Industrial Research Ltd, PO Box 31-310, Lower Hutt, New Zealand 2. National Institute of Water and Atmospheric Research (NIWA), Lauder, New Zealand

## Introduction

- Routine annual calibration of UVB sensors used to measure total solar irradiance and hence ultraviolet index (UVI) is necessary to ensure accuracy of long term monitoring networks.
- □ This includes measurement of spectral and angular response functions.
- A topic not well documented in the literature is the dependence of the angular response on the spectral distribution of the source used to perform the measurement.

# Yankee Environmental Systems UVB-1 Pyranometer

One of the three main stream broadband instruments used to monitor ground level UVB radiation.

### International Light SED (SEL) 240 Radiometers

- In the process of being retired from the MSL UV network after 23 years of service.
- Spectral response function matches the desired erythemal response function reasonably well but has no temperature control.
- The UG11 was added to decrease the long wavelength responsivity but this did come at the expense of the quality of match to the erythemal action spectrum.



#### □ Used in the MSL and NIWA UV networks in New Zealand.



Figure 1. Diagram and photo of a Yankee Environmental Systems UVB-1 pyranometer.

- Spectral response function achieved by UV stimulation of fluorescent phosphor which then emits visible light detected by a green filtered solid state detector.
- □ The fluorescent phosphor acts as a diffuser.



Hamamatsu R1228 Vacuum Phototube

Figure 4. Diagram of an International Light SED (SEL) 240 Radiometer modified with addition of a UG11 filter.

Achieves spectral response function by interference filter and vacuum phototube.



**Figure 5.** The measured angular response of an International Light radiometer including measurements before and after modifying the instrument with addition of a UG11 filter.

❑ The angular response improves with larger UV component sources.

□ The addition of a UG11 filter has detrimentally altered the quality of angular

**Figure 2.** The measured angular response of a YES UVB-1 pyranometer using light sources of varying spectral distributions.

- □ Figure 2 shows differences in relative angular response between an unfiltered xenon arc source and a WG320 filtered xenon source.
  - □ 0° to 30° from normal: up to 2 %
  - □ 35° to 60° from normal: ~ 3 % to 7 %
  - □ 65° to 90° from normal: ~ 8 % to 21 %
- Results show the larger the short wavelength component of the light source used to perform the angular response measurement, the poorer the match is to the desired ideal cosine response.
- This could be due to angular related variations in penetration depth into the fluorescent phosphor.
- Appropriate source selection achieved by plotting the spectral response function multiplied by spectral irradiance and comparing with the equivalent for typical solar spectra.

- response for all light sources.
- These changes could be caused by the wavelength related changes in refraction angle causing the incidence angles on the interference filter to vary.



**Figure** 6. Selection of the appropriate source spectral distribution for angular response characterisation of an International Light radiometer.

#### Conclusions

- The measurements are performed using a point source only and hence corrections are necessary when used out in the field to account for the diffuse sky component.
- Either tungsten or xenon arc source in combination with the WG320 provides the best approximation.



**Figure 3.** Selection of the appropriate source spectral distribution for angular response characterisation of a Yankee Environmental Systems UVB- Pyranometer.

- The angular responses of the measured instruments vary significantly from the desired ideal cosine response.
- □ The angular response of each detector has a significant spectral dependence.
- It is therefore important to characterise the angular response of such types of detector using a laboratory source which best approximates a daylight spectral distribution.

