Abstract

UV monitoring networks for UV index measurements have been developed during the last years in Italy. These monitoring networks are based on stations allowing continuous measurements through the use of broadband radiometers with spectral response matching the erythemal action spectrum.

The radiometer spectral response differs from the erythemal action spectrum, so it is necessary to set a specific calibration procedure for solar radiometers, in order to obtain a good radiometer characterization and consequently, accurate and reproducible measurements of UV index.

Calibration matrix of erythemal radiometers

The matching between the radiometer and ideal responses (angular and spectral) is often not good, thus requiring a specific setting to the calibration procedure for solar radiometers. Second, the radiometers are exposed to solar radiation and the absolute calibration factor is calculated by the comparison to a reference spectroradiometer. The aim of this work is to show the results obtained by the Arpa Piedmont Laboratory from the characterization of two of the mainly used radiometer types. Moreover the comparison of these results with those obtained by the World Calibration Center for UV is shown.

The results point out the operative difficulties associated to the laboratory characterization, with particular reference to the spectral response in the region where the radiometers are less sensitive. Due to these difficulties, it is essential a fine tuning of the instrumental chain, in order to obtain a good radiometer characterization and consequently, accurate and reproducible measurements of UV index.

Measurements of radiometer responses in laboratory

The spectral response facility

The spectral response facility consists of a Bentham DM 150 double monochromator coupled to a 150 W Xenon lamp in order to maximize the monochromator throughput.

Behind the exit slit of the monochromator is placed a beam splitter. It allows to check the stability of the system during the spectral response measurement, through a photodiode placed at the exit of the beam splitter with lower intensity.

The throughput of the facility is characterized by means of a power calibrated photodiode over the 280-400 nm spectral range. At each wavelength the spectral response is calculated as the ratio between the radiometer voltage and the power measured by the photodiode.

The angular response facility

The source used to measure the angular response is a 1000 W Xe lamp, placed three meters away from the radiometer, which is irradiated with a uniform field. It is rotated to obtain measurements for different incidence angles. The rotation axis passes through the radiometer’s reception plane.

Radiometer characterization in the Arpa Piedmont Laboratory and comparison with the World Calibration Center for UV in Davos

The spectral and angular responses of three radiometers were measured in the Arpa Piedmont Optical Laboratory and the measurement results were compared with those obtained by the World Calibration Center for UV (PMOD-WRC).

In particular the radiometers measured are two of the mainly used radiometers and are reported in the following table:

<table>
<thead>
<tr>
<th>Radiometer</th>
<th>Holder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kipp&Zonen UV-S-AE-T s.n. 526</td>
<td>Arpa Vda</td>
</tr>
<tr>
<td>Kipp&Zonen UV-S-AE-T s.n. 80003</td>
<td>Arpa Piedmont</td>
</tr>
<tr>
<td>Yankee Env. Syst UVB-1</td>
<td>Arpa Vda</td>
</tr>
</tbody>
</table>

Calibration matrices

Since the response functions must be measured in order to calculate the radiometer calibration matrix, these matrices have been calculated using the functions measured by the two laboratories and the solar measurements carried out by Arpa Valle d’Aosta during the calibration of its radiometers. In the figures shown below, the ratio between the matrices calculated using the functions measured by the two laboratories is reported.

Conclusions

For Kipp&Zonen radiometers, the comparison results are really good and the calibration matrix coefficients differ not more than 1%. Whereas for Yankee radiometer, the accordance is worse but, concerning the matrices, within 12%, although the differences between the SRFs are much higher (up to 35%).