Characterisation of nonlinearities of array spectroradiometers

S. Nevas¹, P. Blattner², O. El Gawhary³, T. Pulli⁴, P. Kärhä⁴, L. Egli⁵, and J. Gröbner

¹ PTB, ² METAS, ³ VSL, ⁴ Aalto / MIKES, ⁵ PMOD/WRC
Overview

- Array spectroradiometers (spectrographs) are gaining popularity in Solar UV measurements
- Terrestrial solar UV irradiance varies over 5 to 6 orders of magnitude
- Spectrographs are known to be relatively nonlinear, so a linearity characterization is required
- Within the EMRP ENVo3 SolarUV project.
 - Measurement setups were developed at Aalto, METAS, PTB and VSL
 - Lasers / monochromators
 - Fixed wavelength / varied wavelength
 - Targeted irradiance levels $10^{-5} - 1 \text{ W m}^{-2} \text{ nm}^{-1}$
 - Setups were compared by characterizing spectrographs
 - AvaSpec-ULS2048LTEC-USB2
 - Stellarnet Blue-Wave spectrometer
Setup at PTB (and METAS)

- Based on wavelength tuneable laser facility (TULIP)
- Frequency doubling and tripling of a mode-locked Ti:Sa fs-laser, wavelength tuneable within UV region
- A special fibre bundle as a pulse-to-cw converter
- Collimated beam, Variable filter for attenuating signal levels
- S1227 trap detector as linearity reference
- Corresponding setup also developed at METAS
Setup at Aalto

- Based on monochromator and lamps
 - 500-W Xe for spectral measurements
 - 1-kW Hg for high levels
- Collimated beam
- ND filter wheels for attenuation
- S1337 photodiode as linearity reference
- Simultaneous measurement of signal and reference
Setup at VSL

- Integrating sphere as output. Detectors and spectrographs mount to ports
- Attenuation obtained with two polarizers that can be rotated
- Powered with 372.7 nm UV laser
- Possibility to use other light sources, such as laser driven plasma light source (LDLS)
- Portable for field applications
PTB measurements with two methods:
- 1. keeping the irradiance level fixed and varying the integration time,
- 2. varying the irradiance level at fixed integration time.

Both methods gave similar results as a function of ADC counts.

Results (Fig.) show significant nonlinearity that must (and can) be corrected
- No wavelength dependence
- Source most likely the electronics

Setup works as expected
AvaSpec results (Aalto and VSL)

- Results very similar to PTB
- Setups work as expected, VSL device has somewhat high noise in results
- All methods agree with each other
AvaSpec results (Spectral Irradiance)

- Results of PTB (left) and Aalto (right) corrected mathematically for nonlinearity and converted to spectral irradiance
- Nonlinearity errors reduce to statistical noise only
Similar results to the other spectrograph

Significant non-linearity that can be corrected
Conclusion

- Two different array spectroradiometers were characterized to compare setups for the linearity characterizations at Aalto, PTB and VSL.
- The measurements in irradiance-variation mode could be carried out within a dynamic range from 1×10^{-4} – 2 W m$^{-2}$ nm$^{-1}$. The lowest measurable irradiance was limited by the responsivity of the instruments.
- Results of the linearity measurements at the NMIs were in a good agreement. Also results obtained by irradiance variation were consistent with those collected by varying the integration time of the instruments.
- Both instruments showed noticeable nonlinearities that seemed to be caused by signal processing electronics (ADC) and could be corrected as a function of ADC counts.
- Having the correction applied, no additional nonlinearity for irradiances of up to 2 W m$^{-2}$ nm$^{-1}$ could be detected.