Realization of Improved Solar UV Diffusers

Tomi Pulli¹, Josef Schreder², Allard Partosoebroto³, Gregor Huelsen⁴, Janne Askola¹, Joop Mes³, Petri Kärhä¹⁵, and Julian Gröbner⁴

1. Metrology Research Institute, Aalto University, Espoo, Finland
2. CMS - Ing. Dr. Schreder GmbH, Kirchbichl, Austria
3. Kipp & Zonen, Delft, Netherlands
4. Physikalisch-Meteorologisches Observatorium Davos PMOD/WRC, Davos, Switzerland
5. Centre for Metrology and Accreditation MIKES, Espoo, Finland
Table of contents

• Background
• Material characterization
• Simulation algorithm
 • Operating principle
 • Parameter studies
• Optimized diffusers
 • Fiber diffuser (Schreder)
 • Brewer diffuser
• Conclusions
• Outlook

EMRP ENV03 SolarUV
Part of this work has been supported by the European Metrology Research Programme (EMRP) within the joint research project “Traceability for surface spectral solar ultraviolet radiation” (SolarUV). The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.
Background

Global UV irradiance measurement

- **Diffusers** used in global solar UV irradiance measurements.
- Angular response
 - Proportional to the *cosine of the zenith angle* of radiation.
 - **Independent of the azimuth angle.**
- Purely trial-and-error based optimization is time consuming.
Steps of Diffuser optimization

1. Study different diffuser materials.
 • PTFE (Teflon) or quartz?
2. Construct simulation algorithm.
 • Monte Carlo ray tracing
3. Find out material parameters.
 • Compare measurement results with simulations
4. Use algorithm to optimize diffuser geometry.
5. Construct and characterize the diffuser.
Material characterization

Angular response & transmittance

- Beam-expanded HeCd gonio.
- "Bubbled" quartz materials*
 - No phase transition
 - High transmittance
 - Low integrated cosine error

\[
f_2 = \int_{0^\circ}^{85^\circ} \left| \frac{R(\theta)}{R(0) \cos(\theta)} - 1 \right| \sin(2\theta) d\theta \cdot 100 \%
\]

Overview

- **Monte Carlo ray tracing algorithm.**
- Rays traced from detector towards the sky.
- Inside the diffuser **
 - Propagation
 - Scattering
 - Absorption
- **Material interfaces**
 - Transmission
 - Reflection

Diffuser algorithm

Weather dome

- Affects the propagation direction and weight of the particle.
- Angle of the first transmitted ray calculated exactly.
- Transmittance from geometrical series using flat sheet approximation.
Simulation

Parameter sensitivity

- The sensitivity of the angular response to different parameters can be studied.
- For example, studying the effect of spatial misalignment of the diffuser element.
 - By changing the visible area of the diffuser.
 - Small manufacturing tolerances required!
Optimized diffusers

Fiber diffuser (Schreder)

- **Flat quartz diffuser**
 11 mm in diameter.
- Integrated cosine error $f_2 = 1.4\%$.
- Simulation results agree after small modification
 - Diameter of the visible area of the diffuser was decreased by 1.3 mm.
 - The angular response of the optical fiber was not characterized.

![Graph showing cosine error vs. incident angle](Image)
Optimized diffusers

Brewer diffuser

• **Flat quartz diffuser**
 22 mm in diameter.
• Integrated cosine error $f_2 = 1.3\%$.
 • Significant improvement over the standard diffuser!
• More on this in the talk by Allard and Joop.
Realization of Improved UV Diffusers

Conclusions

- **Monte Carlo algorithm** for optimizing solar UV diffusers was developed.
 - Can guide the diffuser design process.
 - Useful for parameter studies (manufacturing tolerances!)
- ""Bubbled"" quartz diffusers have variety of attractive features.
 - Transmittance, angular response, no phase transition, etc.
- **Two new of entrance optics** were constructed in the project.
 - Simple planar quartz diffuser elements.
 - Measured integrated cosine error around 1.4 %.
Outlook

or how to proceed?

- **Surface roughness?**
 - Alters the angular response at large incident angles.
- **Potential problems**
 - *Azimuthal dependence*
 - *Harder to simulate*
- **Shaped diffusers?**
 - E.g. Spherical front surface.
 - **Potential problems**
 - *Manufacturing cost, quality and tolerances.*

What about this bit?